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troni
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 Bio S
ien
es Division, Argonne National Laboratory, Argonne, ILd University of Illinois at Chi
ago, Chi
ago, ILThe Advan
ed Photon Sour
e at Argonne National Laboratory enables stru
-tural biologists to perform state-of-the-art 
rystallography di�ra
tion experimentswith high-intensity X-rays. The data gathered during su
h experiments is used todetermine the mole
ular stru
ture of ma
romole
ules to enhan
e, for example, the
apabilities of modern drug design for basi
 and applied resear
h.The steps involved in obtaining a 
omplete stru
ture are 
omputationally inten-sive and require the proper adjustment of a 
onsiderable number of parameters thatare not known a priori. Thus, it is advantageous to develop a 
omputational infras-tru
ture for solving the numeri
ally 
omplex problems qui
kly, in order to enablequasi-real-time information dis
overy and 
omputational steering. Spe
i�
ally, wepropose that the time-
onsuming 
al
ulations be performed in a \
omputationalgrid" a

essing a large number of state-of-the-art 
omputational fa
ilities. Further-more, we envision that experiments 
ould be 
ondu
ted by resear
hers at their homeinstitution via remote steering while a beamline te
hni
ian performs the a
tual ex-periment; su
h an approa
h would be 
ost-eÆ
ient for the user.We 
ondu
ted a 
ase study involving multiple tasks of a stru
tural biologist,in
luding data a
quisition, data redu
tion, solution of the phase problem, and 
al-
ulation of the �nal result|an ele
tron density map, whi
h is subsequently used formodeling of the mole
ular stru
ture.We developed a parallel program for the data redu
tion phase that redu
es theturnaround time signi�
antly. We also distributed the solution of the phase problemin order to obtain the resulting ele
tron density map more qui
kly. We used theGUSTO testbed provided by the Globus meta
omputing proje
t as the sour
e of the� Corresponding author.
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tural Biologyne
essary state-of-the-art 
omputational resour
es, in
luding workstation 
lusters.
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tion.1. Introdu
tion
High-brillian
e X-ray sour
es promise to revolutionize the dis
ipline of stru
-tural biology by providing imaging 
apabilities with unpre
edented spatial andtemporal resolution. However, the e�e
tive use of these 
apabilities requires theability to 
olle
t, ar
hive, analyze, and visualize orders of magnitude more datathan is 
urrently possible. This paper des
ribes work 
ondu
ted in a Departmentof Energy Grand Challenge proje
t that seeks to produ
e innovations in methods,algorithms, and software that will allow this data to be utilized fully by s
ientists.The fo
us of this paper is a 
ase study in whi
h advan
ed 
omputationalinfrastru
ture 
omponents are applied to 
omplete the set of tasks fa
ed by astru
tural biologist, ranging from a
quiring the data, to solving the phase prob-lem, to 
al
ulating the �nal result|an ele
tron density map. As part of thisstudy, we developed a parallel program that redu
es the turnaround time for thedata a
quisition phase dramati
ally. We also distributed the task of solving thephase problem in order to obtain the resulting ele
tron density map more qui
kly.The results presented in this paper provide useful data about the utility of
lusters and 
omputational grids in general for su
h appli
ations.The paper is organized as follows We �rst dis
uss the tasks performed in atypi
al stru
tural biology experiment. We then analyze the experiment to deriverequirements for a grid-enabled stru
tural biology environment. We outline thetasks needed to develop and improve the infrastru
ture to ful�ll these require-ments. Performan
e data for the various steps in the pro
essing pipeline areobtained by 
ombining two unique state-of-the-art infrastru
ture 
omponents:the Advan
ed Photon Sour
e (APS) and the GUSTO testbed provided by theGlobus proje
t [18℄. We demonstrate that the turnaround time for 
ondu
tingAPS experiments 
an be improved signi�
antly by using grid resour
es. Finally,we summarize our results and 
on
lude the paper by pointing out opportunitiesfor further resear
h.
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tural Biology2. Stru
tural Biology and X-Ray Di�ra
tionKnowledge of a

urate mole
ular stru
tures is a prerequisite for basi
 re-sear
h in mole
ular or 
ell biology and for applied resear
h, su
h as modern drugdesign and stru
ture-based fun
tional studies to aid the development of e�e
tivetherapeuti
 agents. Brilliant syn
hrotron X-ray beamlines are powerful tools todetermine the stru
tures of large ma
romole
ules, su
h as proteins. X-ray 
rystal-lography is a te
hnique that exploits the X-rays di�ra
tion from a 
rystal. Basedon the di�ra
tion pattern obtained from the periodi
 assembly of mole
ules inthe 
rystal being examined, the ele
tron density is re
onstru
ted. The last stepof the stru
ture determination then is to progressively re�ne a mole
ular modelthat 
orresponds to the experimental ele
tron density. In summary, we distin-guish four main steps in a typi
al X-ray di�ra
tion experiment:Step 0: Experiment planning and preparationStep 1: Data 
olle
tionStep 2: Data redu
tionStep 3: Data analysis and model 
onstru
tionThe result of this multistep pro
ess is a quite a

urate mole
ular stru
ture.X-ray 
rystallography 
an reliably provide the answer to many stru
ture-relatedquestions, from global folds to atomi
 details of bonding. In 
ontrast to othermethods, no size limitation exists for the mole
ule or 
omplex to be studied [19℄.In the following se
tions, we analyze ea
h of the steps listed above and de-termine requirements in order to derive guidelines for 
reating a 
omputationalinfrastru
ture that will support the experimentation fa
ilities for stru
tural biol-ogy. The 
ase study we have 
hosen fo
uses on the 3-oxo-�5-steroid isomerase,also 
alled �5-3-ketosteroid isomerase, or KSI. KSI has been the fo
us of exten-sive bio
hemi
al and 
hemi
al study for over forty years, with the obje
tive ofunderstanding the 
atalyti
 me
hanism and the basis for its extraordinary eÆ-
ien
y. Determination of the 
rystallographi
 stru
ture of KSI remained elusive,however, until re
ently with the possibility of Multiple-energy Anomalous Dis-persion (MAD) phasing at an Advan
ed Photon Sour
e beamline. The resultof the analysis pro
ess is shown in Figure 1. It is far beyond the s
ope of thispaper to give a more 
omprehensive des
ription of X-ray 
rystallography and thedetails of the 
ase study. For more information we refer to [16,2℄. In Table 1we list the exe
ution times and data sizes as they appear while using 
ommon
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tural Biology 5Table 1Sequential exe
ution times and data sizes as they appeared during the KSI 
ase studyTime on RS=6000 DataStep 0: weeks/month -Step 1: 4� 675 se
onds 18 GbytesStep 2: 4� 973 se
onds <1 GbyteStep 3: 4� 45 minutes < 50 MbytesStep 1 + 2 + 3: appr. 5 hours 20 minutessequential programs and methods during the KSI 
ase study.Besides the 
ase study we performed additional experiments with otherdatasets. We also tested the algorithm with tetragonal 
hi
ken eggwhite lysozymeand tri
lini
 
yto
hrome-
. These datasets are representative of the wide rangeof experiments that are 
ondu
ted at ma
romole
ular 
rystallography beamlines.This in
ludes \small", \medium", and \large" problems.3. Infrastru
ture Design and Requirements AnalysisThe ideal infrastru
ture that allows a stru
tural biologist to perform thesteps in a 
rystallographi
 experiment is shown in Figure 2. This environment isdepi
ted from the point of view of the s
ientist, with as many details as possiblehidden.While analyzing our 
ase study of an X-ray experiment, we determinedrequirements that are re
e
ted in the infrastru
ture design. First, the stru
turalbiologists must have easy a

ess to, and use of, the 
omputational infrastru
ture.Se
ond, the environment should provide a great deal of 
exibility to en
ompassthe di�erent experiment 
on�gurations of the large and diverse user 
ommunity.Third, the 
omputer analysis time should be minimal, in order to a
hieve thehighest possible utilization by the users for the 
urrent running experiment atthe beamline, as well as postpro
essing of the experiment data with di�erentparameter settings.The in
reased te
hni
al 
omplexity of today's dete
tors and 
ompute re-sour
es motivates the development of easy-to-use interfa
es for intera
ting withthe 
ompute environment. This environment also in
ludes programs that providea simple interfa
e for 
ontrolling and monitoring the experiment. The interfa
e to
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Figure 1. The KSI stru
ture diagram, a result of the 
ase study.state-of-the-art software will ultimately determine the su

ess of the equipment.The goal is to enable the s
ientist to 
on
entrate on the s
ienti�
 problem at hand,rather than spending time learning about often-
omplex 
ompute environments.3.1. Experiment Planning and PreparationStep 0. Before the a
tual experiment is 
ondu
ted, plans are made, literaturesear
hes are 
ondu
ted, and supporting data is retrieved from online databases. Alarge amount of intera
tion takes pla
e between members of the experiment team,resulting in a pre
ise plan to 
ondu
t a di�ra
tion experiment and to generateappropriate 
rystals for the di�ra
tion experiments.The need for a 
ollaborative environment is obvious. The resear
hers areoften at di�erent geographi
al lo
ations. The literature sear
h is done at lo
al li-braries; but in
reasingly, with the popularity of the Web, more and more arti
lesare being obtained online. Certainly, online databases lo
ated throughout the
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ture design for an ideal 
omputational environment from the pointof view of the s
ientist. The design hides the te
hni
al details of the hardware 
omponents,enabling the stru
tural biologist to 
on
entrate on the s
ien
e.world provide a

ess to data useful for the initial resear
h. Properly used, 
ol-laborative tools 
an signi�
antly improve the s
ienti�
 idea ex
hange and redu
ethe ne
essity for travel to make s
ienti�
 information ex
hange possible.3.2. Data Colle
tionStep 1. The Stru
tural Biology Center (SBC) at the APS serves as a nationaluser fa
ility for ma
romole
ular 
rystallography [15℄. The two major design goalshave been to1. provide extremely brilliant beamlines for studies that 
annot be performedelsewhere, and2. maintain a high user throughput in order to serve the largest number of
rystallographers possible.
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ed X-Ray Sour
e for Stru
tural BiologyTherefore, the SBC emphasizes both speed and brightness. To this end,all SBC 
omponents|opti
s, dete
tor, 
ontrols/data a
quisition, and dataanalysis|were designed expli
itly to work together as an integrated system. Ide-ally, data analysis would pro
eed on the 
y, at the same rate as data a
quisition,for the highest level of s
ienti�
 produ
tivity.The experiment setup at the SBC beamline is as follows. An X-ray beam of a
hara
teristi
 wavelength is used to perform the di�ra
tion experiment. First, in-tense X-ray radiation produ
ed by a syn
hrotron is mono
hromated and fo
used.Then it passes through the sample 
rystal mounted on a pin on a goniometer,whi
h permits the 
rystal to be positioned in di�erent orientations in the beam.The di�ra
ted X-rays are re
orded with a CCD dete
tor.The APS CCD X-ray dete
tor 
onsists of nine CCD elements with a totala
tive area of 210 by 210 mm2. Two readout modes are supported. In the full-resolution readout mode, an image of 18 Mbytes (3072 � 3072 pixels) 
an beread out in 1.8 se
onds, while in binned mode, an image of size 4.6 Mbytes (1536� 1536 pixels) 
an be read in 0.45 se
onds [13,17,14℄. Ea
h pixel is representedby a 16-bit integer value. A typi
al experiment will gather between 250 and1000 images, 
alled a s
an. Thus, the maximum size to store the images for ones
an is 
urrently 18 Gbyte. The minimal a
quisition time with any ele
troni
dete
tor equals the exposure time added to the dete
tor readout time. Currently,the di�eren
e between the a
tual a
quisition time of 4 se
onds and the expe
tedminimal a
quisition time of 2.8 se
onds (for a 0.1 degree image width and full-resolution images) 
an be attributed to the motor motions needed to position ands
an the 
rystal. As these motor motions are tuned, the minimum a
quisitiontimes are gradually being approa
hed. Figure 3 shows an example image takenduring a s
an of KSI. The spots shown in Figure 3 are 
reated by 
onstru
tiveinferen
e des
ribed by Bragg's law [1,5℄. These spots are often referred to asBragg spots.For the KSI 
ase study it was ne
essary to 
olle
t four datasets, ea
h witha di�erent wavelength. Ea
h of the four datasets 
ontained 450 images and wasre
orded in 1680 se
onds.With future upgrades to the ele
troni
s, we expe
t the readout time to dropby a fa
tor of four. Thus, ea
h of the 
omplete KSI datasetes 
ould than be
olle
ted in 1176 se
onds. Be
ause of the rapid improvement in the CCD market,we believe that the readout time will be further redu
ed.
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Figure 3. A sample di�ra
tion image of KSI taken with the SBC 9-element CCD 
amera. Theimage has the dimensions of 3072 � 3072 pixels and is 18 Mbytes large.
High-performan
e networked 
omputing systems support the aggregatetasks of beamline 
ontrol, data a
quisition, data analysis, data ar
hiving, anddata visualization. SBC systems are multihomed, with both ATM OC-3 (155Mbps) and 10 Mbps Ethernet 
onne
tivity to support \slow" 
ontrol fun
tions.Image data is transferred from the APS dete
tor to memory on the beamlinesymmetri
 multipro
essor, an SGI Challenge L Server, 
urrently equipped withfour 250 MHz MIPS R4400 pro
essors, via the high-performan
e parallel interfa
e(HIPPI) network proto
ol. On
e the image data is in SGI memory, the data istransferred to a RAID disk array and may be analyzed, ar
hived, and visualizedlo
ally or from distributed Unix-based workstations on the beamlines via ATMOC-3 
onne
tions [14℄
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tural Biology3.3. Data Redu
tionStep 2. To allow the determination of the positions of the atoms in a 
rystal,the pre
ise position of the Bragg spots have to be identi�ed, and all Bragg peaksmust be a

urately determined in spa
e and time. For this purpose, a 3D shape-re
ognition algorithm is applied to ea
h spot, and the data is redu
ed from theimages to the position of all Bragg spots. Clearly, 
rystallographi
 data redu
tionis a 
omputationally intensive pro
ess, be
ause of the size of the images andthe enormous number of Bragg di�ra
tion peaks (on the order of 106). Theentire pro
ess 
an be tedious and slow, and may need to be iterated with variedparametri
 settings before it is 
ompleted properly.Two modes of operations are important for the stru
tural biologist: (1)a mode that enables one to deliver the data redu
tion shortly after the data
olle
tion is 
ompleted, and (2) a mode that enables one to redo the redu
tionstep with modi�ed parameter settings. The latter mode is important in 
ase amistake during the parameter setup prevents the dete
tion of all ne
essary Braggspots on the images. In Se
tion 4.2 we present a parallel data redu
tion algorithmthat dramati
ally redu
es the time needed for this step.Besides the obvious need for a powerful 
ompute infrastru
ture, anotherrequirement arises from the physi
al experiment setup. Be
ause of the hazardousand often unpleasant environment, remote operation is desirable. With remoteoperation, the fa
ility 
an maintain a small but well-trained team of beamline sta�experimentalists. This approa
h o�ers several bene�ts. It redu
es the operationaland user-spe
i�
 
ost and minimizes travel 
ost to the fa
ility. It allows novi
euser groups to gain a

ess to a unique fa
ility su
h as the APS. Furthermore, itin
reases the a

ess time to the beamline while minimizing the e�ort to set upexperiments by the trained experts.3.4. Data Analysis and Model Constru
tionStep 3. In this last step of an X-ray experiment, a model for the ele
tron densitymap is 
onstru
ted by using the output of the previous steps. On
e the exa
tpositions of the Bragg peaks are known, a best �t to the available di�ra
tion datais found that does not violate the physi
al reality. In pra
ti
e, X-ray stru
turedetermination is not an absolute te
hnique. In many 
ases one must rely onother information besides the di�ra
tion data. One way to obtain additionalinformation is to use multiple wavelength anomalous dispersion (MAD). In this
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hnique, di�ra
tion 
hanges are indu
ed in the atomi
 s
attering fa
tor of aheavy atom bound to the protein by measuring di�ra
tion data at a number ofdi�erent X-ray energies where the anomalous s
attering fa
tors of the heavy atomare signi�
antly di�erent from one another.We used a well-known phase-solving algorithm (SOLVE) [11℄, whi
h is ap-plied repeatedly to �nd the 
orre
t parameter setting. SOLVE is designed toautomate the steps of ma
romole
ular stru
ture determination. It s
ales data,solves Patterson fun
tions, 
al
ulates di�eren
e Fouriers, looks at a native Fourierto see whether there are distin
t solvent and protein regions, and 
an s
ore partialMAD [7℄ solutions to build up a 
omplete solution automati
ally.Be
ause of the 
omplex geometri
al stru
ture of the solutions, the need arisesto display and analyze the stru
ture with other 
olleagues. It is not suÆ
ientjust to provide a 
ollaborative tool with a white board or video 
amera. Insteadmultiple user require simultaneous a

ess to spe
ialized datasets displayed inthree dimensions.3.5. Additional RequirementsThe requirements posed by the stru
tural biologists result in impli
it re-quirements for the 
omputational environment.Real-Time Data Pro
essing. Be
ause of the uniqueness of the APS fa-
ility, a

ess time at the beamlines is limited. Thus, developing a quasi-real-timedata pro
essing framework is needed. The faster s
ientists 
an obtain informa-tion about the state of the experiment and the analysis of the experiment data,the faster they 
an rea
t to erroneous experiment 
onditions. Real-time datapro
essing also provides the ability to do a rapid 
omparison with data gatheredduring previous experiments prepared with di�erent parameter values.Quality of Servi
e. An additional 
onsequen
e of the unique experimentalfa
ility and its limited a

ess is that the 
omputational environment should be, tosome extent, fault tolerant. Real-time pro
essing depends on at least a minimaldegree of quality of servi
e.Reservation. To ensure timely exe
ution of the program, it is ne
essary toperform the reservation of 
ompute and network resour
es as part of a quality-of-servi
e request.Lo
al Spe
ialized Servi
es. Be
ause of the �nan
ial 
ost involved withli
ensing software on a parti
ular 
omputer, it must be possible to reserve a
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ompute resour
e on whi
h the software is installed. It also must be possible tospe
ify mapping 
onstraints to the programs to be exe
uted. These additional re-quirements motivated us to use the GUSTO testbed (part of the Globus proje
t),sin
e it addresses these issues [4℄.4. Parallel System and Algorithm DesignIn this se
tion we outline the programs we developed in order to supportthe framework shown in Figure 2. We start with the remote system 
ontroland the 
ollaborative environment. Then we des
ribe the parallel data redu
tionalgorithm and outline how we used a 
ompute 
luster to exe
ute the stru
turedetermination program in parallel.4.1. Remote System Control and Collaborative EnvironmentAs pointed out earlier, a major goal is to design the interfa
e to the 
on-trol and analysis software to be simple for the 
omputational s
ientist. Online
ontrol of the experiment should be possible from various points and throughvarious devi
es, in
luding workstations on the experimentation 
oor as well as at
ollaborating sites. Given the nature of the resulting stru
tures, stereo viewing
apabilities are essential.To this end, we have designed two spe
ialized stereo graphi
 tools, depi
tedin Figures 4 (a) and (b). The �rst tool 
an animate the photon impa
t onthe CCD dete
tor during the experiment. This tool was espe
ially useful indeveloping the parallel data redu
tion algorithm and in determining appropriateparameter settings for the data redu
tion step. The se
ond tool 
an display the
rystal stru
ture in a ball-and-sti
k diagram for large mole
ules.4.2. Parallel Data Redu
tionTypi
ally, X-ray 
rystallography data redu
tion exe
utes the following steps:1. Find and identify intense di�ra
tion peaks (Bragg spots).2. Index the peaks to dis
over the 
rystal unit 
ell dimensions, 
rystal orienta-tion, and other important stru
tural parameters.3. Re�ne the 
rystal, dete
tor, goniometer, and x-ray sour
e parameters.
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b) Structure Browsera) Bragg Spot Animator

Figure 4. S
reen dumps from the CAVE appli
ations developed to assist the stru
tural biologistduring data analysis. Figure (a) shows the Bragg spots as they develop during time in spa
e.The 
olors indi
ate on whi
h parallel pro
essor the Bragg spot was analyzed (using the parallelalgorithm des
ribed later). Figure (b) shows a \walk" through a mole
ule to better see thestru
ture.4. Integrate over the intensities of the re
e
tions that appear on the images inthe data set obtaining a list of re
e
tions. The result of this step is a redu
edlist of re
e
tions.5. Merge and �lter optionally the re
e
tion lists to perform, for example, reso-lution 
uto�s.6. Cal
ulate and apply s
ale fa
tors to di�erent bat
hes of re
e
tions, averagesymmetry equivalent re
e
tions, 
al
ulate merging and 
ompleteness statis-ti
s, and 
reate a re
e
tion list of unique re
e
tions.Steps 1{3 are performed with data from a single image, step 4 is performedon the whole dataset; and steps 5 and 6 are performed on the list of re
e
tions
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onsuming in the 
urrent operational use.Thus, our e�orts to derive a parallel algorithm 
on
entrated on the developmentof a parallel integration algorithm.We derived a parallel algorithm from a sequential 
ode, 
alled d*trek, avail-able at the SBC (see Se
tion 7). The parallel extensions we made have beenintegrated into the produ
tion version of the sequential 
ode.Sequential Algorithm As mentioned earlier, the di�ra
tion data appear at vary-ing intensity on multiple images as they are rotated into, through, and out ofthe di�ra
ting 
ondition. In the language of the 
rystallographer, the 
ompleteset of images gathered during an experiment is 
alled a s
an. The sequentialintegration algorithm de�nes a shoebox as a 3D volume 
ontaining the intensityinformation of a single spot over its di�ra
ting range, whi
h 
ontains a subsetof images of the s
an. The algorithm predi
ts the range of images on whi
h thespot appears.After the image is dete
ted on whi
h the spot disappears, the program de-�nes a 
omplete 3D \pro�le" of the spot for a subsequent pro�le analysis. Ifthe spot extends a
ross too many images (prede�ned to in
lude 50 images forthe sequential algorithm), it 
an be reje
ted. This situation usually o

urs be-
ause the spot was too 
lose to the proje
ted rotation axis and therefore may
ontain errors. The parameter de�ning the 
uto� value is 
alled the shoeboxlimit.Greater eÆ
ien
y of the sequential and parallel algorithm is a
hieved by de
reas-ing the shoeboxlimit. If su
h a spot o

urs over a large number of images, itis likely to be eliminated in the steps following the integration. We varied theshoeboxlimit parameter while observing dataset 
ompleteness, whi
h is de�nedas the per
entage of re
e
tions found without introdu
ing the shoeboxlmit. Sin
ethe sequential algorthim de�nes also a prede�ned \
uto�" radius, only 96% of alldete
ted Bragg spots are a
tually used for the analysis.Figure 5 shows the variation of the dataset 
ompleteness while varying theshoeboxlimit for the KSI high-energy dataset. We found that 25 is a 
onservativeand well-suited shoeboxlimit, resulting in a dete
tion of over 95% of the re
e
tionsand providing high a

ura
y in a single s
an, whi
h is suÆ
ient for the stru
turalbiologist to solve the stru
ture a

urately.Based on the sequential algorithm, two distin
t parallel algorithms 
an bedeveloped. The �rst algorithm divides the s
an (sequen
es of images) among a
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Figure 5. Variation of the shoeboxlimit for the KSI \high" energy dataset versus the dataset
ompleteness, whi
h is the per
entage of all possible re
e
tions that 
an be dete
ted.group of pro
essors. The se
ond algorithm divides the images in small subregions,ea
h of whi
h is assigned to one pro
essor.Parallel Algorithm Based on Distributing a Sequen
e of Images To improve theperforman
e exhibited by the sequential integration program, the parallel algo-rithm divides ea
h dataset into subs
ans and pro
esses ea
h subs
an on a di�erentpro
essor, thereby a
hieving an a

elerated pro
essing rate. Data are subse-quently merged and s
aled with a fast merging algorithm [9℄. Figure 6 depi
tsthe distribution of subs
ans onto multiple pro
essors.In the parallel algorithm, a boundary 
ondition arises when a s
an is dividedinto subs
ans. We start out by dividing the number of images evenly among thepro
essors. We 
all ea
h of the sets the base image set of a pro
essor, or the baseimage set.At the end of a base image set of a pro
essor, some shoeboxes are still a
-



16 von Laszewski, et al. / A Grid Enhan
ed X-Ray Sour
e for Stru
tural Biology
Diffraction

Images

1

2

Integration Scaling 
and

Merging

 
 

Overlap

n

SubscanFigure 6. Distribution of subs
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onsid-ered in order to a
hieve s
ienti�
ally sound results.tive; that is, the spot is still visible on a number of following images. In order toguarantee numeri
al stability of the method, a dynami
 boundary between 
on-se
utive subs
ans pla
ed on di�erent pro
essors is used to prevent early shoeboxtermination. The dynami
 boundary of ea
h subs
an is extended to 
omplete alla
tive shoeboxes or to 
ontinue until the shoeboxlimit has been rea
hed.To 
al
ulate the memory overhead, let Nbase de�ne the number of images ina base image set of a pro
essor, and let Nlimit denote the shoeboxlimit. Then themaximum number of images stored per pro
essor is Nbase+Nlimit. Let Np denotethe numbers of pro
essors used in the parallel algorithm, and let NI denote thetotal number of images in the s
an.Then, the memory overhead for the storage of the parallel algorithm onMIMD ma
hines is at most NpNlimitNI :
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tural Biology 17Thus, it is desirable to keep the shoeboxlimit as small as possible whileguaranteeing dataset 
ompleteness.One 
onsequen
e of this parallel algorithm is that it performs best when thedata 
olle
tion is nearly 
ompleted and the majority of the images are availablebefore the integration begins. Hen
e, it supports very well a qui
k analysis of thedata with a varying set of parameters.Parallel Algorithm Based on the Subdivision of the Image Area We also 
on-sidered parallelizing the sequential algorithm while partitioning the images intoa number of di�erent image areas, or subimages, with ea
h subimage being pro-
essed on a di�erent pro
essor, as depi
ted in Figure 7. We de
ided not to developthis algorithm for the following reasons.
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Figure 7. Distribution of the images in subimages onto multiple pro
essors.First, the algorithm requires extensive modi�
ation to the original sequential
ode, resulting in a signi�
ant divergen
e from the original algorithm. Su
h diver-
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Figure 8. Distribution of the Bragg spots as they appear on the dete
tor plate.gen
e would have prevented us from upgrading to new versions of the sequentialalgorithms as they be
ame available, and maintaining the overall program wouldhave involved an immense overhead.Se
ond, one of the biggest problems with this algorithm is that the 
rystal,dete
tor, goniometer, and sour
e parameters are re-re�ned periodi
ally (typi
allyevery two to �ve images), to a

ommodate small ina

ura
ies in de�nition of theexperiment or small physi
al errors in apparatus 
alibration. This re�nementis 
orre
ted with the help of observed re
e
tions from all areas of the dete
-tor. Hen
e, 
onsiderable overhead for a global 
ommuni
ation step between ea
hpro
essor o

urs every two to �ve images. A further problem related to the par-titioning of the image is that the area of a re
e
tions is approximately 10 � 10pixels wide. When a re
e
tion is in a subimage boundary, it is 
al
ulated inthe neighboring pro
essors at least twi
e. Spe
ial 
are has to be taken in orderto remove these double-
al
ulated points. Be
ause of the shift in x-y dire
tion
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e
tion during the image-taking pro
ess, the boundary should be 
hosenlarger, resulting in lower speedup. Third, be
ause of the irregular distribution ofthe Bragg spots, whi
h are dire
tly proportional to the 
al
ulation time, a 
onsid-erable load imbalan
e is introdu
ed. Figure 8 shows the number of Bragg spotso

urring during the experiment at a parti
ular region of the dete
tor. Clearly, inorder to a
hieve good eÆ
ien
y, a load balan
ing algorithm should be developed.This is not an easy task be
ause we do not know a priory the distribution of theBragg spots.We tested the speedup possible with this algorithm by de
omposing the 18Mbyte 3072 � 3072 square pixel images into nine 1024 � 1024 square pixel im-ages using a large dataset. We distributed ea
h subimage on di�erent pro
essorsand observed only a fa
tor of 4.5 speedup on nine pro
essors. The speedup willde
rease as the number of pro
essors in
reases. Furthermore, our results 
on-�rmed the need for re�nement with re
e
tions from all areas of the dete
tor toprodu
e s
ienti�
ally sound results. Hen
e, we have not parallelized the 
ode inthis manner.Changes in the Control Flow Having identi�ed a suitable parallel algorithm forthe data redu
tion step, we now list the ne
essary steps to start the parallelalgorithm.1. Determine parameters for the integration2. De
ide how many pro
essors should be used3. De
ide on whi
h ma
hines the pro
essors are lo
ated4. Determine the set of images needed for the pro
essor5. Make the images known to the pro
essor6. Do the integration on ea
h pro
essor in parallel7. Colle
t the result from ea
h pro
essor8. Display the resultCombining the sequential algorithm and the parallel algorithm to steer the
omputation, as depi
ted in Figure 9, allows for a better utilization of the re-sour
es. The sequential algorithm is used to qui
kly de
ide whether the experi-ment has been started su

essfully and the data produ
ed are suÆ
ient for theanalysis performing in 
onse
utive steps. While moving the data redu
tion to a
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omputer, more powerful graphi
al analysis tools 
an be used. In addi-tion, a gateway to remote 
ollaboration is provided.
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Figure 9. The 
ontrol of the experiment and the data redu
tion 
an be performed while 
ombiningthe sequential and the parallel algorithm.4.3. Parallel Data AnalysisAfter the data redu
tion step is 
ompleted, the stru
tural biologist must 
re-ate a model. We used the program SOLVE in our 
ase study and were able to runit in parallel on di�erent input parameters. For the KSI stru
ture determinationwe needed four instantiations of SOLVE to �nd the appropriate answer. Ea
hinstantiation required 45 minutes on a single-pro
essor SGI Origin2000 worksta-tion. Hen
e, we redu
ed the 
al
ulation time fourfold. Other algorithms, su
h asShake-n-Bake (SnB), used for solving the stru
ture are des
ribed elsewhere [3℄.The 
hoi
e of the algorithm depends on the stru
ture to be analyzed. We intend
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tion of appropriate solve routine as part of a graphi
al userinterfa
e.5. Performan
e EvaluationThe programs based on the algorithms des
ribed above are written in su
ha way that they 
an be exe
uted on diverse 
ompute resour
es. This in
ludesworkstation 
lusters, super
omputers, and meta
omputing environments.As part of this proje
t, we explored te
hnologies to enable dire
t a

ess fromthe Advan
ed Photon Sour
e to Argonne's Mathemati
s and Computer S
ien
eDivision (MCS) that houses a variety of 
ompute resour
es. Spe
i�
ally, we havepioneered a

ess to groups of workstations and super
omputers as part of theGUSTO testbed, whi
h is supported by the Globus proje
t [18℄.5.1. Hardware Infrastru
tureWe fo
used in the performan
e evaluation on the use of 
ompute nodes thatare part of an IBM SP-2 and a small Origin2000. Ea
h 
ompute node on theSP-2 is based on an RS=6000 pro
essor and has a main memory of 512 Mbytes.The operating system is AIX 4.2. We 
ondu
ted experiments with up to 64pro
essors on this ma
hine. The maximum number of pro
essors on the Originis sixteen. The Origin is based on the MIPS R10000 
hipset running IRIX6.4.The total amount of memory for this ma
hine is 4 Gbyte. Ea
h of the systemshas suÆ
iently sized lo
al disk spa
e to store all of the images obtained duringan experiment. The disks are able to hold multiple datasets, ea
h of whi
h 
anbe at least 18 Gbytes. The large datasets 
an be ar
hived on a 20-Tbyte storagerobot atta
hed to both systems. While moving the data-redu
tion and analysispro
ess away from the beamline 
omputer systems, 
ongestion on the experimenthardware is alleviated. This kind of \
omputeservi
e" is espe
ially importantfor future s
ienti�
 proje
ts that la
k the budgets to pur
hase and maintain alarge system to fa
ilitate the work lo
ally. Other proje
ts su
h as the SnB andCMT (Computed Mi
rotomography) proje
ts [12℄, have also bene�ted from thispioneering work [20℄.
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ed X-Ray Sour
e for Stru
tural Biology5.2. Network Infrastru
ture and File TransferTo perform the data redu
tion on a remote 
ompute server, the imagedata must be transferred to the remote ma
hine. The transfer of up to 1000of the image �les, 18 Mbytes in size, in quasi-real time is possible only over high-performan
e networks (100 Mbps+) and between systems equipped with high-performan
e disks. The transfer of images 
an be 
ondu
ted in parallel with thedata a
quisition. As soon as an image is written to disk, it is transferred to theremote system. As pointed out before, the limiting fa
tor is the wall
lo
k timeneeded to a
quire an image from the dete
tor. Thus, the transfer time shouldnot ex
eed 2.8 se
onds in order to keep up with the image a
quisition.Figure 10 shows the 
onne
tivity for the SBC 
omputing systems to theANL labwide ATM network infrastru
ture, in
luding Argonnes super
omputers,and external networks, su
h as the ESnet and the vBNS. We have measured6.9 Mbytes per se
ond FTP image data transfer rates from ATM OC-3 
apableSBC-CAT beamline systems to ATM OC-3 
onne
ted systems in MCS. This
orresponds to 2.6 se
onds per 18 Mbyte image, ful�lling the request to keep upwith the a
quisition rate [14℄.Table 2 depi
ts elapsed times to transfer data from Se
tor 19 ATM OC-3
onne
ted systems using FTP, over the ANL labwide ATM network, to ATM OC-3 
onne
ted systems in Argonne's Mathemati
s and Computers
iene
e Division(MCS). For the KSI datasets the a
quisition 
ould pro
eeded on-the-
y with 1se
ond image a
quisition time a
hieved with the next generation of dete
tors. Thethe 
urrent image a
quisition is 2.8 se
onds and will be improved shortly. Thus,the program developed is well suited to support the next generation dete
torsystems.5.3. Parallel Data-Redu
tion Performan
eTable 3, Table 4, Figure 11, and Figure 12 show the performan
e of theparallel data redu
tion algorithm applied to the KSI 
ase study on the Origin2000and the RS=6000-based 
ompute nodes. The speedup on the SGI Origin2000 andthe RS=6000 is similar, although the overall pro
essing speed is faster on theOrigin. Be
ause of overlap between subs
ans on di�erent pro
esses the eÆ
ien
ylevels o� while using 8 to 20 pro
essors. This de
rease of eÆ
ien
y is less ofa problem for datasets with many images, be
ause the overlap regions are a
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Figure 10. The ANL labwide ATM network infrastru
ture with 
onne
tion to the Internet.Table 2File transfer performan
e between the APS Se
tor 19 and the MCS super
omputers for di�erentdatasets.Image FTP Time FTP TimeSize in s in sData Set NI in Mbyte per Image per Data Setlys023s1a 384 18.0 2.60 999
yto
hrome 
 720 18.0 2.60 1872ksi-high 450 4.5 0.65 294ksi-in
 450 4.5 0.65 294ksi-low 450 4.5 0.65 294ksi-peak 450 4.5 0.65 294smaller fra
tion of the entire data set. Thus, we 
on
lude that a small powerfulworkstation 
luster is well suited for many experiments.
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ed X-Ray Sour
e for Stru
tural BiologyA signi�
ant in
rease in data-pro
essing speed is a
hieved by using multiplepro
essors for analysis. For the 
yto
hrome 
 data, as one example, the CPUtime to pro
ess the 
omplete dataset of 720 (18 Mbyte) images, using the se-quential integration program, on a single RS=6000 pro
essor was 3,860 se
onds.This represents an integration rate of 5.4 s/image for the sequential algorithm.Distribution of integration a
ross eight RS=6000 workstations requires an elapsedtime of 614 se
onds, or 10 minutes, whi
h represents an e�e
tive integration rateof 0.86 s/image and a speedup better than six-fold. More important, redu
-tion of this pro
ess from more than 1 hour to just 10 minutes is a meaningfulimprovement in the a
tual use of a syn
hrotron beamline experiment.Larger numbers of pro
essors are useful when multiple datasets for a MADanalysis (see Se
tion 3.4) are analyzed in parallel, as it 
an be done for the KSIstru
ture. This dataset is referred to in the tables and �gures as KSI-all. It
ontains four datasets taken at di�erent phases. These sets are referred to as KSIlow, in
, high and peak.With the parallel integration program, all four datasets are pro
essed si-multaneously a
ross multiple pro
essors, resulting in a signi�
ant a

elerationover the sequential pro
essing of the data. For example, it requires 1590 se
ondsto pro
ess a single KSI data set using the sequential integration program, butonly 501 se
onds (less than 9 minutes) to pro
ess all four data sets in paralleldistributed over 16 RS=6000 workstations. This represents a three-fold a

elera-tion over a single KSI data set done sequentially, and a twelve-fold a

elerationin pro
essing speed when 
ompared with the time to analyze the four data setssequentially. As more and more pro
essors are applied to the task, the overallanalysis time 
ontinues to de
rease. With 64 RS=6000 pro
essors, the four KSIMAD data sets are 
ompleted in 163 se
onds: less than 3 minutes, as 
omparedwith the 6,290 se
onds (1 hour and 45 minutes) required to analyze the fourdata sets sequentially. Thus, the data redu
tion 
an be performed qui
kly witha varied set of parameters.As pointed out earlier, the limiting fa
tor for the eÆ
ien
y is the potentiallylarge overlap between di�erent subs
ans. As a rule of thumb, we re
ommend theuse of eight pro
essors for ea
h s
an 
olle
ted during the experiment to a
hievea high rate of eÆ
ien
y.Memory Utilization The maximum memory used at any one time in a singleintegration pro
ess is de�ned by:
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tion image (1 � 18Mbyte)+ 4 � spatial distortion �les (4 � 2:4Mbyte)+ 1 � nonunformity image (1 � 18Mbyte)+ 1 � dark image (1 � 18Mbyte)+ 1 �Mas= Mas + 63:6MbyteMas spe
i�es the memory used to maintain the a
tive shoeboxes. Let rbe the number of re
e
tions in the list of re
e
tions, sx(r) be the predi
tedshoeboxsize in x dire
tion, sy(r) the predi
ted shoeboxsize in y dire
tion, �w(r)the predi
ted spot width in degrees of the shoebox, and Iw the image width indegrees. Here pad is a fa
tor used for in
reasing the analyzed area in order notto overlook information. Then, Mas is de�ned asMas =Xr sx(r) � sy(r) � (2pad+ �s(r)=Iw) (1)The integration algorithm spends the majority of its time managing shoe-boxes rather than performing 
oating point or integer 
al
ulations. For the KSIdata set this number is smaller than 2� 18 Mbytes.5.4. S
aling and MergingWe re
ognized early the need to in
rease the performan
e of the integrationalgorithm. In addition, we found that the original sequential s
aling program ranextremely slow for low-symmetry 
rystals, spe
i�
ally the tri
lini
 
yto
hrome 
(see Table 5). Thus, the authors of the sequential program repla
ed the originals
ale-merge by a program 
alled REQAB, whi
h performs signi�
antly faster [6℄.For the 
yto
hrome 
 data set, 10 
y
les of the original sale-merge algorithmresulting in over 7000 se
onds are required to properly s
ale the data and togenerate output summaries. When s
aling with REQAB, 1 
y
le of the originals
ale-merge algorithm is needed for the generation of the output data in additionto performing REQAB. Thus, a total of 398 se
onds to s
ale and summarize the
yto
hrome 
 data is needed. This is a 17-fold a

eleration 
ompared with theoriginal s
ale-merge program.
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ed X-Ray Sour
e for Stru
tural Biology6. Summary and Con
lusionsThis paper analyzed the requirements for improving the 
omputational fa-
ilities at a unique resear
h fa
ility, the APS. Two very important requirementsare the ease of use and the quasi-real-time-pro
essing of the data to in
reaseusability and throughput.To ful�ll these requirements, we developed a unifying framework that enablesdata a
quisition, data redu
tion, data analysis, stru
ture solving, and data visu-alization. We utilized a real meta
omputing environment by using the GUSTOtestbed, whi
h is part of the Globus proje
t. Moreover, we pioneered networkparameters and infrastru
ture enabling fast a

ess to the GUSTO testbed fromthe APS that is reused by other proje
ts.We su

essfully ported the sequential integration program to a parallel en-vironment. We integrated our 
hanges to the 
ode into the produ
tion 
ode,distributed by the original author of the program. We also initiated improve-ments in the performan
e of the produ
tion 
ode.We have demonstrated that the parallel version of the data redu
tion 
oderenders results identi
al to those of the serial version, but in a fra
tion of thetime, depending on the number of pro
essors applied to the task. We havesolved a 
rystal stru
ture using this program. Thus, we have 
ompleted the�rst stages of validation. As with all 
rystallographi
 software, more thoroughvalidation is a

omplished through use with a wide variety of 
rystals by the user
ommunity. The parallel integration program is ready to pro
eed to this �nalstage of validation. Future work involves �ne-tuning of the parallel algorithm.Using the parallel integration program, users 
an a
hieve signi�
ant a

el-eration of pro
essing speeds. With the trend in the dete
tor marketpla
e towardfaster readout speeds, the ability to analyze the data in parallel be
omes in-
reasingly advantageous. A planned upgrade to the APS 1 Dete
tor readoutele
troni
s would de
rease the readout speed by a fa
tor of 4. In these 
ases, us-ing the parallel integration program, data analysis would not be
ome the overall\rate-limit" at a syn
hrotron beamline.Using the parallel integration program, users 
an distribute the data re-du
tion task over multiple pro
essors within a symmetri
 multipro
essor system,heterogeneous \o�-the-shelf" 
ompute 
luster, or over multiple nodes of a super-
omputer whi
h may be a

essed through the Internet via a high-performan
elink. This has been demonstrated multiple times during the past year. In addi-
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tural Biology 27tion, we have shown a simple way to in
orporate a stru
ture-solving algorithmutilizing a small number of workstations. Currently, resear
h is underway toin
lude other state-of-the-art solving algorithms.For experimentation at syn
hrotron sour
es like the APS at Argonne thathave a high-performan
e link to super
omputing resour
es onsite and to theESnet and vBNS networks and as more high-speed ba
kbones and uplinks areinstalled, this approa
h to real-time 
rystallographi
 data analysis be
omes ana
hievable reality. MOreover, 
ollaboration tools supporting multiple output de-vi
es from CAVE to graphi
 workstations are already available today.7. Code AvailabilityThe program d*TREK is 
ompatible with viturally all modern operatingsystem platforms (AIX, IRIX, HP-UX, Linux, Solaris, and Windows NT) and 
anpro
ess data from most, dete
tors 
urrently in servi
e at syn
hrotron beamlinesthat perform ma
romole
ular 
rystallography.We have tested the d*TREK parallel dtintegrate implementation on AIX,IRIX, and Solaris using both GNU and platform-spe
i�
 ANSI-C++. The par-allel d*TREK 
ode 
hanges have been introdu
ed into the distributed 
ode andmay be 
ompiled and run by anyone li
ensed to use d*TREK.The d*TREK suite and toolkit for analysis of single 
rystal experimentationwith 2-D position-sensitive dete
tors, was written by Dr. James W. P
ugrathof Mole
ular Stru
ture Corporation [10℄. d*TREK 
an be used freely by usersof APS and is available for a minimal handling fee to all resear
hers funded byDOE. Currently, d*TREK has been li
ensed to over 30 institutions in the U.S.A.,Canada, Japan, the UK and Fran
e.A
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Table 3Performan
e of the parallel integration program on an SP2 and an Origin2000 aplied to the 72018Mbyte 
yto
hrome 
 imagesRS=6000 RS=6000 Origin2000 Origin2000Np tintegrate Speedup tintegrate Speedupin s in s1 3860 1.0 2160 1.02 2000 1.9 1130 1.94 1100 3.5 607 3.68 614 6.3 339 6.416 368 10.5 208 10.420 315 12.0 - -Table 4Performan
e of the parallel integration program on an SP2 and an Origin2000 applied to the 4KSI all datasets with 4�450 images, ea
h 4.5Mbyte large.RS=6000 RS=6000 Origin2000 Origin2000Np tintegrate Speedup tintegrate Speedupin s in s1 6290 1 3378 12 3030 2.1 1761 1.924 1520 4.2 1040 3.28 917 6.9 575 5.916 501 12.6 312 10.8320 388 16.2 - -32 273 23.0 - -48 230 27.4 - -64 162 38.8 - -
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Figure 11. Runtime performan
e of the parallel integration program on an SP2 and an Ori-gin2000 applied to the KSI all dataset with 4�450 images.
Table 5Merging and s
aling performan
e on an Origin2000.10 
y
les 1 
y
leSI NI Nrl trmerge tsmerge treqab tsmerge t integrateDataset in MByte in s in s in s in s in sLysosyme 18 384 9 6.9 428.7 55.0 7.1 -KSI-low 4.5 450 9 25.1 1055.5 167.2 35.2 -KSI-in
 4.5 450 9 26.8 1070.7 157.9 38.4 -KSI-peak 4.5 450 9 26.6 1123.2 129.7 37.9 -KSI-high 4.5 450 9 25.0 1041.2 131.3 101.7 1040Cyto
hrome 
 18 720 10 62.8 7010.9 325.2 72.4 2160Note: SI=Imag Size, NI=Number of images, Nrl=Number of re
e
tion list, trmerge=time to
ondu
t the re
e
tion merge, tsmerge=time to 
ondu
t the s
alemerge, treqab=time for reqabs
aling and merging.
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Figure 12. Speedup performan
e of the parallel integration program on an RS=6000 and anOrigin2000 applied to the KSI all dataset with 4�450 images.
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Figure 13. Speedup of the parallel integration program on the Origin2000 applied to the KSI alldataset.
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Figure 14. Exe
ution time of the parallel integration program on the Origin2000 applied to theKSI all dataset.
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Figure 15. Merging and s
aling performan
e on an Origin2000.


